[dih‘ Adobe® Audition® Amio Software Development Kit
obe

Introduction

Amio is the name of the file-level media 10 interface used by Adobe® Audition® CS5.5. File filters or
plug-ins built with previous SDK versions are no longer supported.

The heart of this SDK is the sample code, which implements an Amio plug-in supporting input and
output of Monkey's Audio losslessly compressed audio files. This SDK distributes files modified from
Monkey's Audio SDK version 4.06, copyright © 2000-2009 by Matthew T. Ashland. Please be aware if
you use any of the Monkey’s Audio source code included with the example plug-in, that use of this code
is subject to the Monkey’s Audio license at http://www.monkeysaudio.com/license.html.

The sample plug-in can be built using Microsoft® Visual Studio® C++ 2008, or Apple® Xcode® 3.2.5. It is
possible other versions of these tools may be used to create a plug-in which is compatible with Adobe
Audition CS 5.5, but only these have been tested.

For each new plug-in you create, you must generate a new identifier known as a UUID or GUID. Every
plug-in must have a unique identifier, and you cannot simply use the identifier from the sample code. If
you are unsure how to generate a UUID, do a web search on "uuid generator". See the use of
AmioGetAmiolnfolnterface: :SetPluginlD in AmioApelnterface.cpp, around line 93.

Apart from studying the sample code in general and AmioApelnterface.cpp in particular, the most
important file to understand is AmioSDK.h, which defines the interfaces the plug-in uses to
communicate to the host application and describes how they are used. The most complete technical
documentation of the Amio SDK is found in the comments there.

Project Set-up

Note that even debug builds of your plug-in must be compatible with the release build of Adobe
Audition CS5.5. For Windows builds, you will want to use the non-debug version of the C runtime library
used, Multi-threaded (/MT).

To build and run a plug-in during development, set the build target and executable directory
appropriately. Note that if you want to build plug-ins on Windows directly into Audition CS5.5's default
install location in the Program Files (x86) directory, you may need to run Visual Studio as administrator
in order to have the proper privileges.

In Visual Studio, a plug-in should be given an ".amio" extension and built to the Plug-Ins\Amio directory:

Adobe® Audition® 1 Amio SDK

-

AmioApe Property Pages

(2] = |

Configuration: | Active(Debug) * | Platform: |Active(Win32) "] [Configuration Manager... l
Comrmon Properties - Output File C:\Program Files (x86)\Adobe\Adobe Audition {SiS\Plug-Ins‘\ArA
Framework and Referen| | Show Progress Mot Set
Configuration Properties Version

General Enable Incremental Linking No (/INCREMENTAL:NO)

Debugging Suppress Startup Banner Yes (fNOLOGO)

CiC++ Ignere Import Library Mo

Linker P .
General Cutput File |@—§3|
Input
Manifest File C\Program Files (x860\Adobel\Adobe Audition C55.54Plug-Ins\Amich5(ProjectMame).amioc
Debugging
System
Optimization
Embedded IDL
Advanced [OK] [Cancel]
Command Line

Manifest Tool . .

Rescurces]

AML Document Generat

Browse Information Output File

Build Events ~ | | Override the default output file name. (/OUT:[file])

4 m p

0K

|| Cancel || apply |

-

AmicApe Property Pages

I

Cenfiguration:

All Configurations

~| Platform: | Active(Win32)

Vl ’ Configuration Manager...]

Common Properties
Configuration Properties
General
Debugging
C/C++
Linker
General
Input
Manifest File
Debugging
System
Optimization
Embedded IDL
Advanced
Command Line
Manifest Tool
Resources
XML Decument Genera

Build Events
Custom Build Step

s

4 (L 2

m

Browse Information L

» | Debuggerto launch:

[Local Windows Debuager

7]

Command

Command Arguments

D:\vdweaverDP1\audition\archive'\d.0\bin\Release\32\Adobe Auditic

Command

|'\

|9 | = |

C\Program Files (xB6)\Adobe\Adobe Audition C55.5VAdobe Audition.exe

Macros= =

| (e

[oK

Command

The debug command to execute,

] ’ Cancel Apply

Adobe® Audition®

Amio SDK

In Xcode, a plug-in should be given a ".bundle" extension and built to Contents/Amio Plug-Ins:

eaee [AmicApe

0

| Default | AmioApe.Debug = | | E - B | |E| & '\' '& i o [Q String Matching

Overview Action Breakpoints Clean All Build Build and Run Debugger Tasks Info Search

Groups & Files ll"| [File Name 4 Role
w@ AmioModule.h |8 7] AmioApe.bundie
L] AmioSDK.h

@ AmioUtilities.cpp

L] AmioUtilities.h - ;

= Ceneral | Comments
¥ [| Resources L J ;

@ Seaingsiialog xily Destination: [Absolute Path l-ﬂ

| Info.plist
v [:jgameworks and Libraries Full Path: fApplications/Adobe Audition C55.5/Adobe Audition.app/Contents /Amio Plug-ins
¥ | Linked Frameworks
b §% Cocoa.framework [_] Copy enly when installing
¥| | Other Frameworks
b B AppKit.framework
> F CoreDarta.framework
> ﬁ Foundation.framework
¥ | Preducts
»> "_f] AmioApe.bundle
b] AmioApe.bundle
Y@ Targets
¥ " AmioApe.Debug
¥] Copy Bundle Resources (1)
¥ || Compile Sources (28)
[Link Binary With Libraries (1)
|| Copy Files (1)
b 7 AmioApe.Release
¥« Executables

000 [AmioApe =)

[Deraic Amio...+] (3] i e

Groups & Files

AR O
Jsi] AmioSDK.h
Je AmioUrilities
L] AmioUrilities

¥ | Resources
@ SettingsDialog.
L] Info.plist Executable Name: Executable |

B Info copy.plist

¥ [Frameworks and L Executable Path: I [Applications/Adobe Audition C55.5/Adobe Audit'mn.app| I (Choose...)
¥ [| Linked Framew
> p Cocna.fram:i_
[] Other Framewa
= AppKit.fram
» ﬁ CoreData.fra
» ﬁ Foundation.i
¥ Products
I 7] AmioApe.bundl
¥] AmioApe.bundi

v @ Targets

b 7] AmioApe.Debug
> "ﬁ AmioApe.Release
¥ o Executables
¥ (1 Find Results
Build succeeded

Add To Project: [AmioApe N

(" Previous | E’anish'—a

A

Adobe® Audition® 3 Amio SDK

A Tour of the SDK Contents

e AmioSDK - The Amio interface definition and a few helper classes and utilities are found here.

(0]

AmioSDK.h - The most important file in the SDK, containing the list of Amio commands
and interfaces.

AmioSDKTypes.h - A few types and defines, including the supported audio sample types,
and channel labels (i.e. speaker placements).

AmiolnterfaceTemplate.h - A helper template if you choose to use it (discussed below).
AmioUtilities - A few utilities, most notably Unicode conversions as nearly all strings
passed between the app and plug-in are UTF16 strings.

AmioPrivateSettingsSerializer - If you wish, you can use this class to help create and
parse the strings which represent settings your file type supports but are not
interpreted by the app. For example, for an mp3 file, these settings would include a
file's bitrate and whether CBR or VBR compression is used. The plug-in passes a setting
string to the app when a file is opened. When a file is written, the plug-in receives the
string from the app so that a saved file can be created using the same sub-type and
settings used in the original file. If your plug-in posts a settings dialog, the settings are
also passed as such a string. See GetPrivateFormatData and SetPrivate-
FormatData in AmioSDK.h.

e Common/AmioApe - Most of the source code for the example plug-in is common between

Windows and Mac, and is found here.

(0]

AmioApelnterface.cpp - The most important file in the example plug-in, as it contains
the entire interface between the plug-in and the app. All other files merely support the
methods found here.

AmioApePrivateSettings - A class that keeps track of the private format settings used by
the plug-in, in this case merely the compression level.

ApeReader / ApeWriter - Classes that use the Monkey's Audio 1APEDecompress and
IAPECompress interfaces to read and write audio samples and metadata.

e Common/Monkeys Audio Modified Source - The Monkey's Audio source code, hastily modified to

support Windows and Mac.

e Documentation - This documentation.

e Mac Sample/AmioApe - The Xcode project for building the example plug-in, including a sample

release build binary of the plug-in, and the Mac-specific files—mostly relating to the settings

dialog.

e Windows Sample/AmioApe - The Visual Studio project for building the example plug-in, including

a sample release build binary of the plug-in, and the Windows-specific files—mostly relating to the

settings dialog.

Adobe® Audition® 4 Amio SDK

Concepts

There is a single C interface between the app and plug-in:

extern "C" AMIO_EXPORT AmioResult Amiolnterface(asdk::int32 inCommand,
void* inState, void* inlnterface);

A single breakpoint here will catch all communication between the app and the plug-in. All calls are
from the app to the plug-in, and because the plug-in does not signal, notify, or call back into the app,
this allows for a very simple interface. Through this interface, a command is specified, a state object is
passed if necessary (generally this will be an instance of an object the plug-in has created to store the
state of a file being read or written), and a pointer to the interface the plug-in can use to get or set
parameters related to the given command.

The SDK provides, and the sample code uses, a template class, template<class ReadT, class
WriteT> class AmiolnterfaceTemplate, which handles all the casting to specific Amio interface
types, and allows you to think in terms of only the higher level Amio interfaces and your own file reader
and writer classes. This template also provides default empty implementations of methods you do not
need to override, and a couple helper methods such as SetErrorString and AddWarning for easily
communicating error and warning text back to the app. In any case, this template is not required, and
you may choose to handle all the individual low-level commands yourself. If you do use the template,
your Amiolnterface function will, as in the example code, simply pass all commands to the
EntryPoint method of the class you derive from AmiolnterfaceTemplate.

Each plug-in is queried using AmioGetAmiolnfolnterface, and must provide a unique GUID to
identify itself. Using this interface, the plug-in sets the human-readable name of the format it is
supporting as well as a list of file extensions that can be used for reading and writing. If no extensions
are set for file input, that means only writing is supported; conversely, if no extensions are set for file
output, then only reading is supported.

Note: Please be absolutely certain that you use a new, unique GUID for each plug-in you create or
distribute!

Using AmioOpenlnterface, the app requests the plug-in to open a file and provide basic format
information about it. If a file is supported and will be opened, but with caveats, warning text can be
provided using AmioErrorInterface, and will be displayed by the app. After open, additional format
information will be queried using AmioFormatinterface. Data will then be read from the file,
generally using AmioReadSamplesInterface. When the app is finished with the file, it will be closed
using kAmiolnterfaceCommand_Close.

When writing a file, the app may use kAmiolnterfaceCommand_GetDefaultExportSettings to
get format parameters that the plug-in always supports for writing. Often, the app will use the
AmioGetExportSettingsinfolnterface to pass in a format it would like to use. This format may
have come from a different file type and not be valid for your plug-in. Here is where you must modify
the parameters to the closest format that is supported by your plug-in. In this way, the app negotiates
with the plug-in to arrive at a format that is mutually agreeable.

Adobe® Audition® 5 Amio SDK

Note: To give the user the best possible experience, please set all the parameters in AmioGetExport-
SettingsInfolnterface as accurately and completely as possible.

After the final format and settings have been validated by the plug-in, a request is made to create a file
using AmioWriteStartinterface. The app then passes output samples to the plug-in sequentially
using AmioWriteSamplesinterface, and asks the plug-in to finish and close the file using
AmioWriteFinishinterface.

Careful handling of metadata is an important courtesy to the user, and essential for any modern
workflow. Metadata that is found and described by the plug-in when a file is opened is read by the app
using AmioReadMetadatalnterface. During file writing, metadata is made available to the plug-in
at all times—during open, writing, and finishing—via AmioFormatiInterface: :GetMetadataltem,
GetMetadataltemIlnfo, and GetMetadataltemCount. Thus, your plug-in can write the supplied
metadata to the file at the most convenient time.

The type of each item of metadata is described by a GUID. If there is metadata that your plug-in reads
that should flow through Audition CS5.5 uninterpreted and be written back out when the file is saved,
assign your own GUID(s) to represent the metadata in those particular formats. If metadata is passed to
your plug-in using a GUID you do not recognize, you should ignore it and not write it as if it were
metadata you understand.

All the metadata the user can see and manipulate in Audition CS5.5 is contained in a metadata item with
the ID kAmioMetadataTypelD_XMP. It is vital that your plug-in not discard or ignore this data. This
metadata should be stored inside the files you support and correspondingly retrieved. The example
plug-in demonstrates this by using the flag kAmioFileFlag_XmpSupportThroughPluginOnly and
translating XMP metadata items with the tag kAmioMetadataTypelD_XMP to and from the RIFF style
metadata the plug-in supports natively. Note that an eccentricity in the interpretation of the
kAmioFileFlag_XmpSupportThroughPluginOnly flag means that the kAmioFileFlag
WriteXmpMetadataBeforeSamples flag should also be set during writing. See the example plug-in
for guidance on the effective use of this flag.

If you are writing a plug-in for a file format supported by Adobe's XMP library, you may instead use
AmioFormatlnterface: :SetXmpHandlerld to set the appropriate file type, causing XMP metadata
reading and writing to be controlled by the app using the XMP library, outside the plug-in. But if your
file format is not fully supported by the existing handlers, there is no choice but to implement XMP
metadata handling in the plug-in itself.

Note: Please do not distribute a plug-in without first verifying that XMP metadata can be correctly read
from the file, viewed and modified in the Audition CS5.5 Ul and written to the file.

Functionality Not Shown in the Example Plug-in

The example plug-in demonstrates audio read and decompressed from start to finish immediately after
a file is opened. This audio is cached and maintained by the app, and no further data for this file is
requested from the plug-in. If a plug-in uses a format which supports instant reads and seeks, there may

Adobe® Audition® 6 Amio SDK

be no need for this time-consuming conforming step: the plug-in can set the flags kAmioFileFlag_
ReadSamplesRaw and kAmioFileFlag_RealTimeSupport. In this case, the app will request audio
whenever it is needed using the AmioReadSamplesRawlnterface interface. This interface deals not
with separate channels each containing an integer number of audio samples, but rather with blocks of
interleaved sample data at byte rather than sample offsets. Although this approach may be used, it is
not generally recommended because of the requirements it places on the plug-in to support smooth
playback in real-time.

When the exact number of audio samples cannot be known until after all audio data is processed, that
is, when the sample count cannot easily be computed at the time a file is opened, the plug-in can return
an estimated number of samples, set the kAmioFileFlag_SampleTotal Inexact flag, and use
AmioReadSampleslInterface: :SetEndOfFile to effectively communicate the total number of
samples to the app.

Video is supported for reading in Adobe Audition CS 5.5. When a file is opened, you can use
AmioVideoFormatlInterface to set information about video streams in the file. The app will then
request video frames using the AmioReadVideoFramelnterface. This version of the interface
supports only 32-bit ARGB video data, 8 bits per component.

The SDK supports the case in which user interaction is needed to resolve format ambiguity when
opening a file. See AmioPreOpenlnterface and AmioRunImportSettingsDialoglnterface.

Using AmioGetAmiolnfolnterface, the SDK exposes a way for a single plug-in to expose support for
multiple types of files. That is, AddInputFormat or AddOutputFormat can be called multiple times
with a different formatID. This support is not likely to work well in the current version of the app, and
this approach should be avoided. Generally, a separate plug-in with a unique SetPluginlD GUID
should be used for each format you want to provide, that is, for each different collection of file
extensions.

Note that this SDK distributes files modified from Monkey's Audio SDK version 4.06, copyright © 2000-2009 by
Matthew T. Ashland. These modifications were made in a fairly hasty manner to allow cross-platform compilation,
and in particular, as the wide character size differs between platforms, it was expedient to remove wide character
support. We thank the creator of the Monkey's Audio SDK for the opportunity to use it and apologize for any
errors that may have been introduced into the modified source during the process of preparing the Amio sample
plug-ins.

Monkey's Audio technology is copyrighted © 2000-2009 by Matthew T. Ashland. Windows® is a trademark of
Microsoft Corporation. Visual Studio® is a trademark of Microsoft Corporation. Xcode® is a trademark of Apple
Inc. Mac® and Mac OS® are trademarks of Apple Inc. All other trademarks and copyrights are the property of their
respective owners.

© 2011 Adobe Systems Incorporated. All Rights Reserved.

Adobe® Audition® 7 Amio SDK

